26 research outputs found

    Performance of optimal hierarchical type 2 fuzzy controller for load–frequency system with production rate limitation and governor dead band

    Get PDF
    AbstractControlling load–frequency is regarded as one of the most important control-related issues in design and exploitation of power systems. Permanent frequency deviation from nominal value directly affects exploitation and reliability of power system. Too much frequency deviation may cause damage to equipment, reduction of network loads efficiency, creation of overload on communication lines and stimulation of network protection tools, and in some unfavorable circumstances, may cause the network collapse. So, it is of great importance to maintain the frequency at its nominal value.It would be useful to make use of the type 2 fuzzy in modeling of uncertainties in systems which are uncertain. In the present article, first, the simplified 4-block type-2 fuzzy has been used for modeling the fuzzy system. Then, fuzzy system regulations are reduced by 33% with the help of hierarchy fuzzy structure. The simplified type-2 fuzzy controller is optimized using the Cuckoo algorithm. Eventually, the performance of the proposed controller is compared to the Mamdani fuzzy controller in terms of the ISE, ITSE, and RMS criteria

    Robust adaptive synchronization of a class of uncertain chaotic systems with unknown time-delay

    Get PDF
    In this paper, a robust adaptive control strategy is proposed to synchronize a class of uncertain chaotic systems with unknown time delays. Using Lyapunov theory and Lipschitz conditions in chaotic systems, the necessary adaptation rules for estimating uncertain parameters and unknown time delays are determined. Based on the proposed adaptation rules, an adaptive controller is recommended for the robust synchronization of the aforementioned uncertain systems that prove the robust stability of the proposed control mechanism utilizing the Lyapunov theorem. Finally, to evaluate the proposed robust and adaptive control mechanism, the synchronization of two Jerk chaotic systems with finite non-linear uncertainty and external disturbances as well as unknown fixed and variable time delays are simulated. The simulation results confirm the ability of the proposed control mechanism in robust synchronization of the uncertain chaotic systems as well as to estimate uncertain and unknown parameters

    Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review

    Full text link
    Coronavirus, or COVID-19, is a hazardous disease that has endangered the health of many people around the world by directly affecting the lungs. COVID-19 is a medium-sized, coated virus with a single-stranded RNA. This virus has one of the largest RNA genomes and is approximately 120 nm. The X-Ray and computed tomography (CT) imaging modalities are widely used to obtain a fast and accurate medical diagnosis. Identifying COVID-19 from these medical images is extremely challenging as it is time-consuming, demanding, and prone to human errors. Hence, artificial intelligence (AI) methodologies can be used to obtain consistent high performance. Among the AI methodologies, deep learning (DL) networks have gained much popularity compared to traditional machine learning (ML) methods. Unlike ML techniques, all stages of feature extraction, feature selection, and classification are accomplished automatically in DL models. In this paper, a complete survey of studies on the application of DL techniques for COVID-19 diagnostic and automated segmentation of lungs is discussed, concentrating on works that used X-Ray and CT images. Additionally, a review of papers on the forecasting of coronavirus prevalence in different parts of the world with DL techniques is presented. Lastly, the challenges faced in the automated detection of COVID-19 using DL techniques and directions for future research are discussed

    Zahra Namadchian Stability Analysis of Nonlinear Dynamic Systems by Nonlinear Takagi-Sugeno-Kang Fuzzy Systems

    No full text
    This paper proposes a systematic procedure to address the limit cycle prediction of a Nonlinear Takagi-Sugeno-Kang (NTSK) fuzzy control system with adjustable parameters. NTSK fuzzy can be linearized by describing function method. The stability of the equivalent linearized system is then analyzed using the stability equations and the parameter plane method. After that the gain-phase margin (PM) tester has been added, then gain margin (GM) and phase margin for limit cycle are analyzed. Using NTSK fuzzy control system can help to have fewer rules. In order to analyze the stability with the same technique of stability analysis, the results of NTSK fuzzy control system will be compared with Dynamic fuzzy control syste

    Analysis and Design of Robust Controller for Polynomial Fractional Differential Systems Using Sum of Squares

    No full text
    This paper discusses the robust stability and stabilization of polynomial fractional differential (PFD) systems with a Caputo derivative using the sum of squares. In addition, it presents a novel method of stability and stabilization for PFD systems. It demonstrates the feasibility of designing problems that cannot be represented in LMIs (linear matrix inequalities). First, sufficient conditions of stability are expressed for the PFD equation system. Based on the results, the fractional differential system is Mittag–Leffler stable when there is a polynomial function to satisfy the inequality conditions. These functions are obtained from the sum of the square (SOS) approach. The result presents a valuable method to select the Lyapunov function for the stability of PFD systems. Then, robust Mittag–Leffler stability conditions were able to demonstrate better convergence performance compared to asymptotic stabilization and a robust controller design for a PFD equation system with unknown system parameters, and design performance based on a polynomial state feedback controller for PFD-controlled systems. Finally, simulation results indicate the effectiveness of the proposed theorems

    Novel Frequency-Based Approach to Analyze the Stability of Polynomial Fractional Differential Equations

    No full text
    This paper proposes a novel approach for analyzing the stability of polynomial fractional-order systems using the frequency-distributed fractional integrator model. There are two types of frequency and temporal stabilization methods for fractional-order systems that global and semi-global stability conditions attain using the sum-of-squares (SOS) method. Substantiation conditions of global and asymptotical stability are complicated for fractional polynomial systems. According to recent studies on nonlinear fractional-order systems, this paper concentrates on polynomial fractional-order systems with any degree of nonlinearity. Global stability conditions are obtained for polynomial fractional-order systems (PFD) via the sum-of-squares approach and the frequency technique employed. This method can be effective in nonlinear systems where the linear matrix inequality (LMI) approach is incapable of response. This paper proposes to solve non-convex SOS-designed equations and design framework key ideas to avoid conservative problems. A Lyapunov polynomial function is determined to address the problem of PFD stabilization conditions and stability established using sufficiently expressed conditions. The main goal of this article is to present an analytical method based on the optimization method for fractional order models in the form of frequency response. This method can convert it into an optimization problem, and by changing the solution of the optimization problem, the stability of the fractional-order system can be improved
    corecore